Tracy Allison Altman

By

fox
1. Prior experience → More trust In Trustworthy Data Analysis, Roger Peng gives an elegant description of how he evaluates analytics presentations, and what factors influence his trust level. First, he imagines analytical work in three buckets: A (the material presented), B (work done but not presented), and C (analytical work not done). “We can...
Read More
1. Vigilance → Better algorithms “Eliminating bias… requires constant vigilance on the part of not only data scientists but up and down the corporate ranks.” In an insightful Information Week commentary, James Kobielus (@jameskobielus) considers the importance of Debiasing Our Statistical Algorithms Down to Their Roots. “Rest assured that AI, machine learning, and other statistical...
Read More
prostatecancerdecision.org
Suppose you’ve gotten a cancer diagnosis. Would your business experience help you navigate the care pathway? Larry Neal describes how he applied his Decision Analysis skills to prostate treatment in Eight Lessons from a Decision Professional’s Cancer Decision. When a physician said Neal had a 30% chance of having cancer, but his analysis suggested 95-99%,...
Read More
1. Debiasing → Better decisions Debiasing is hard work, requiring honest communication and occasional stomach upset. But it gets easier and can become a habit, especially if people have a systematic way of checking their decisions for bias. In this podcast and interview transcript, Nobel-winning Richard Thaler explains several practical ways to debias decisions. First,...
Read More
1. Biased instructor response → Students shut out Definitely not awesome. Stanford’s Center for Education Policy Analysis reports Bias in Online Classes: Evidence from a Field Experiment. “We find that instructors are 94% more likely to respond to forum posts by white male students. In contrast, we do not find general evidence of biases in...
Read More
decision bias in food-poverty policy
1. Biased analysis → Misunderstood cause-effect In Biased Ways We Look at Poverty, Adam Ozimek reviews new evidence suggesting that food deserts aren’t the problem, behavior is. His Modeled Behavior (Forbes) piece asks why the food desert theory got so much play, claiming “I would argue it reflects liberal bias when it comes to understanding...
Read More
boston-dynamics-spot-mini
1. Machines Gone Wild → Digital trust gapLast year I spoke with the CEO of a smallish healthcare firm. He had not embraced sophisticated analytics or machine-made decision making, with no comfort level for ‘what information he could believe’. He did, however, trust the CFO’s recommendations. Evidently, these sentiments are widely shared. — Tracy A...
Read More
Translators at IFLA 2010
1. Hire analytics translators → Keep data scientists happy An emerging role – what some call the Analytics Translator – is offloading burden from data scientists, while helping business executives get better value from their technology investments. A recent HBR piece explains You Don’t Have to Be a Data Scientist to Fill This Must-Have Analytics...
Read More
1. Recognize bias → Create better algorithmsCan we humans better recognize our biases before we turn the machines loose, fully automating them? Here’s a sample of recent caveats about decision-making fails: While improving some lives, we’re making others worse. Yikes. From HBR, Hiring algorithms are not neutral. If you set up your resume-screening algorithm to...
Read More
1. Long view → Better financial performance.A McKinsey Global Institute team sought hard evidence supporting their observation that “Companies deliver superior results when executives manage for long-term value creation,” resisting pressure to focus on quarterly earnings (think Amazon or Unilever). So MGI developed the corporate horizon index, or CHI, to compare performance by firms exhibiting...
Read More
1 2 3

Museum musings.

Pondering the places where people interact with artificial intelligence: Collaboration on evidence-based decision-making, automation of data-driven processes, machine learning, things like that.

Recent Articles

muscle car by bing/create
20 June 2023
Stolen cars and AI ‘moral self-correction’
person in silhouette with orange background, pondering AI input for an evidence based decision
9 May 2023
Can you trust AI with your next decision? Part 3 in a series on fact-checking/citation
image generated by bing image creator bottle on apothecary shelf
25 April 2023
How is generative AI referencing sources? Part 2 in our series
15 March 2023
Can AI replace your CEO?
reference to Google's Bard AI and Microsoft's Bing AI compared to conflict at Sopranos Bada Bing
28 February 2023
What’s state-of-the-art when an AI cites sources of evidence? Part 1 in our series