data science

Tag

woman-in-beach-with-shark-sign
Since my work is about humans+AI deciding together, I attended DAAG 2019 in beautiful downtown Denver, exploring the “intersection of decision analysis and data science to take decision-making to the next level.” The intent was for decision analysts to better understand data science and “support data-centric decision-making” while data scientists could better “guide the use...
Read More
shopper looking thru department store merchandise
To paraphrase Raymond Chandler, too many projects deliver department store data: The most of everything but the best of nothing. Enterprise AI and analytics developers must avoid the mistake of underserving people by overengineering solutions. Designers and decision makers need straightforward tools to make them better, to save time and facilitate their best work. They...
Read More
decision bias in food-poverty policy
1. Biased analysis → Misunderstood cause-effect In Biased Ways We Look at Poverty, Adam Ozimek reviews new evidence suggesting that food deserts aren’t the problem, behavior is. His Modeled Behavior (Forbes) piece asks why the food desert theory got so much play, claiming “I would argue it reflects liberal bias when it comes to understanding...
Read More
boston-dynamics-spot-mini
1. Machines Gone Wild → Digital trust gapLast year I spoke with the CEO of a smallish healthcare firm. He had not embraced sophisticated analytics or machine-made decision making, with no comfort level for ‘what information he could believe’. He did, however, trust the CFO’s recommendations. Evidently, these sentiments are widely shared. — Tracy A...
Read More
monitor showing code
1. Confusing correlation with causation is not the Cardinal Sin of data science, say Gregory Piatetsky (@kdnuggets) and Anmol Rajpurohit (@hey_anmol): It’s overfitting. Oftentimes, researchers “test numerous hypotheses without proper statistical control, until they happen to find something interesting and report it. Not surprisingly, next time the effect, which was (at least partly) due to...
Read More

Museum musings.

Pondering the places where people interact with artificial intelligence: Collaboration on evidence-based decision-making, automation of data-driven processes, machine learning, things like that.

Recent Articles

finger pointing
19 August 2021
How to blame a robot for mistakes: Do your finger pointing properly.
photo of row of townhouses seen through fisheye camera lens
12 August 2020
How Human-in-the-Loop AI is Like House Hunters
coronavirus pandemic curve - johns hopkins
9 April 2020
Deciding while distancing: From data viz to the hard decisions.
soldiers looking at 3d map
26 February 2020
Will military ethics principles make AI GRRET again?
woman exiting revolving door
30 January 2020
Struggling to explain AI? Try this before|after strategy.